
Recommended Intel Compiler Debugging
Options

Category: Program Development Tools

DRAFT

This article is being reviewed for completeness and technical accuracy.

Commonly used options for debugging:

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide
source file traceback information when a severe error occurs at run-time.

Specifying -traceback will increase the size of the
executable program, but has no impact on run-time
execution speeds.

-check all
Checks for all run-time failures. Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform run-time checks on array
subscript and character substring expressions. Fortran only.

Once the program is debugged, omit this option to reduce
executable program size and slightly improve run-time
performance.

-check uninit
Checks for uninitialized scalar varaibles without the SAVE attribute. Fortran
only.

-check-uninit

• 

Recommended Intel Compiler Debugging Options 1



Enables run-time checking for uninitialized variables. If a variable is read
before it is written, a run-time error routine will be called. Run-time checking of
undefined variables is only implemented on local, scalar variables. It is not
implemented on dynamically allocated variables, extern variables or static
variables. It is not implemented on structs, classes, unions or arrays. C/C++
only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are
allocated on the stack to a value that is typically interpreted as a very large
integer or an invalid address. References to these variables are then likely to
cause run-time errors that can help you detect coding errors. This option sets
-g.

-debug all
Enables debug information and control output of enhanced debug information.
To use this option, you must also specify the -g option.

-gen-interfaces -warn interfaces
Tells the compiler to generate an interface block for each routine in a source
file; the interface block is then checked with -warn interfaces

Options for handling floating-point exceptions:

-fpe{0|1|3}
Allows some control over floating-point exception (divide by zero, overflow,
invalid operation, underflow, denormalized number, positive infinity, negative
infinity or a NaN) handling for the main program at run-time. Fortran only.

-fpe0: underflow gives 0.0; abort on other IEEE exceptions⋅ 
-fpe3: produce NaN, signed infinities, and denormal results⋅ 

Default is -fpe3 with which all floating-point exceptions are disabled and
floating-point underflow is gradual, unless you explicitly specify a compiler
option that enables flush-to-zero. Use of -fpe3 on IA-64 systems such as
Columbia will slow run-time performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in
a program at run-time. Also sets -assume ieee_fpe_flags. Default is
-fpe-all=3. Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine
entry and restore them on routine exit. This option can slow runtime
performance. Fortran only.

• 

Category: Program Development Tools 2



-ftz
Flushes denormal results to zero when the application is in the gradual
underflow mode. This option has effect only when compiling the main
program. It may improve performance if the denormal values are not critical
to your application's behavior. For IA-64 systems (such as Columbia), -O3
sets -ftz. For Intel 64 systems (such as Pleiades), every optimization option O
level, except -O0, sets -ftz.

Options for handling floating-point precision:

-mp
Enables improved floating-point consistency during calculations. This option
limits floating-point optimizations and maintains declared precision. -mp1
restricts floating-point precision to be closer to declared precision. It has some
impact on speed, but less than the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations. It disables optimizations that can
change the result of floating-point calculations. These semantics ensure the
accuracy of floating-point computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations and enables floating-point exception
semantics. This is the strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is
-fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the
accuracy of the significand, or fractional part of the floating-point value. For
example, iterative operations like division and finding the square root can run
faster if you lower the precision with the -pc option. -pc64 sets internal FPU
precision to 53-bit significand. -pc80 is the default and it sets internal FPU
precision to 64-bit significand.

• 

Article ID: 92
Last updated: 29 Jul, 2011
Computing at NAS -> Porting & Developing Applications -> Program Development Tools ->
Recommended Intel Compiler Debugging Options

Category: Program Development Tools 3



http://www.nas.nasa.gov/hecc/support/kb/entry/92/?ajax=1

Category: Program Development Tools 4

http://www.nas.nasa.gov/hecc/support/kb/entry/92/?ajax=1

	92.html

